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Mechanism*design

• Mechanism design: theory for “rules of interaction” 
where selfish behavior leads to good outcomes. 

• Selfish behavior: each agent maximizes her own 
utility (rational behavior) 

• Leads: equilibrium (once actions are in equilibrium 
no one has incentive to deviate). 

• Good outcomes: goals of the designer (social 
surplus or welfare, revenue of the auctioneer)



Mechanism*design

Principles of mechanism design theory

• Informative: pinpoints salient features of 
environment and characteristics of good 
mechanisms

• Prescriptive: gives concrete suggestions for design 
of good mechanisms

• Predictive: theory predictions should match reality
• Tractable: theory should not assume super-natural 

ability for the agents or designer to optimize.



Mechanism*design

• In many environments, optimal mechanisms do not 
agree with these principles
• Complex product spaces and preferences (e.g. 

combinatorial auctions)
• Complex information exchange requirements between 
agents

• Complex structure of beliefs required to implement 
Bayes-Nash equilibrium



Mechanism*design

• Complexity is one of the main obstacle of 
mechanism design with truly optimal mechanisms

• In fact, even for simple bimatrix games (games of 
complete information) computing Nash or mixed 
Nash equilibrium is difficult



Complexity+of+computing+Nash+
equilibria

• Nash (1950): all games have a mixed Nash 
equilibrium
• Exist distributions over players’ actions such that each is 

best response to everyone else’s actions

• Theorem. (Brouwer Fixpoint Theorem). If C is 
bounded, convex and closed, and f : C ⟼ C is 
continuous, there exists x s.t. f(x) = x.



Complexity+of+computing+Nash+
equilibria

• n is number of players and Si actions space of player 
i, and Δi be set of probability distributions over 
actions of player i, i.e.
Δi = {(ps : s ∈ Si) | ps ≥0 0 and Σ s ∈ Si ps=1}

• By C to denote the set of the mixed strategies of all 
the players, i.e. C =  Δ1×… ×Δn

• C is convex, bounded and closed. 
• We need a function f : C ⟼ C  that the NE is 
fixpoint

• Natural answer is to use the best response. 



Complexity+of+computing+Nash+
equilibria

• Given p = (p1, p2,…, pn) ∈ C, where pi ∈ Δi
• qi is best response of player i
• Define function as f(p) = (q1,…, qn). 
• Then can try to use fixed point argument
• Fundamental issue is that f may not be a function 

since the best response for the player might not be 
unique 

• If we try to fix it somehow, resulting function may 
not be continuous



Complexity+of+computing+Nash+
equilibria

• Consider  maxqui(q,p-i)-||pi-q||2

• pi is the best response of player i
• For player i maximize penalized utility

• Suppose the maximizer for player i is qi, define f(p) = 
(q1,…, qn)

• Lemma. maxqui(q,p-i)-||pi-q||2 has a unique maximum

• If a class of optimization problems has unique optimum 
then optimum is continuous function of coefficients in 
the objective function

• If f(p)=p then p is Nash



Complexity+of+computing+Nash+
equilibria

• Need “tractable” equilibrium concepts

• Desiderata:
• Universality
• Naturality and credibility
• Efficiently computable 

• Focus on last one: if computing equilibria is 
intractable, it is unlikely that mechanism designer 
can easily implement it



Complexity+of+computing+Nash+
equilibria

• Is there an efficient algorithm for computing a 
mixed Nash equilibrium?

• For zero-sum games von Neumann work shows that 
Nash equilibrium can be characterize as solution of 
linear program
• Using ellipsoid method we already showed that solutions 

to linear programs can be computed efficiently

• Non-zero-sum games do not reduce to linear 
programs

• Proposed algorithms are either of unknown 
complexity, or known to require exponential time.



Complexity+of+computing+Nash+
equilibria
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Complexity+of+computing+Nash+
equilibria

• Recall from last lecture that NP-complete problems 
are those that cannot be efficiently solved unless 
P=NP

• Example: Boolean satisfiability problem (SAT)
• Determine if there exists an interpretation (assignment to 

TRUE or FALSE) that satisfies a given Boolean formula
• For given Boolean formula replace inputs with TRUE or 

FALSE that entire formula = TRUE
• If this replacement is possible, the problem is called 
satisfiable



Complexity+of+computing+Nash+
equilibria

• NP-complete problems like SAT are typically shown 
to be intractable from possibility that solution might 
not exist

• This argument is at the core of NP-completeness 
proof

• Unlike any known NP-complete problem, solution 
to problem of computing Nash equilibrium always 
exists (Nash’s theorem)

• This indicates that while computing mixed Nash is 
not P, it is also not NP-complete



Complexity+of+computing+Nash+
equilibria

• Suppose there is reduction from SAT to Nash: 
efficient algorithm that takes as input instance of 
SAT and outputs instance of Nash

• Then if we provide solution to instance of Nash, we 
could tell if SAT has solution

• We turn this into nondeterministic algorithm to 
verify if instance of SAT has solution
• Guess solution of Nash instance, and check that it indeed 

implies that SAT instance has no solution

• Existence of such on-deterministic algorithm for 
SAT would be similar to establishing P=NP



Complexity+of+computing+Nash+
equilibria

• Papadimitriou (1994) considers a class of 
(seemingly) unrelated “search” problems

• Given an input,  find a solution (which then can be 
easily checked) or report that none exists 

• Note asymmetry between these outcomes: “none 
exists” is not required to be easy to verify.

• Search problem is total if the solution always exists
• Can describe a specific subset of total search 
problems



Complexity+of+computing+Nash+
equilibria

• Consider directed graph

• Vertex in directed graph is “unbalanced” if  number 
of its incoming edges differs from number of its 
outgoing edges 

• For each directed graph and unbalanced vertex there 
must exist at least one other unbalanced vertex

• Problem:
• Input: directed graph G and a specified unbalanced 

vertex of G.
• Output: Some other unbalanced vertex.



Complexity+of+computing+Nash+
equilibria

• Such problems are called PPAD (polynomial parity 
argument for directed graphs)

• Nash is hard if P≠NP
• Existing algorithms seem to confirm it

Theorem (Daskalakis, Goldberg, Papadimitriou, 2008). The 
problem of computing mixed Nash equilibria is PPAD-complete



Approximation

• When optimal mechanism is not easily available, 
good mechanisms can be generated by 
approximations

Definition. For an environment given implicitly, denote an approximation 
mechanism and its performance by APX, and a reference mechanism and 
its performance by REF.
(i)For any environment, APX is a β approximation to REF if 
APX ≥ REF/ β
(ii) For any class of environments, a class of mechanisms is a β
approximation to REF if for any environment in the class there is a 
mechanism APX in the class that is a β approximation to REF.
(iii) For any class of environments, a mechanism APX is a β approximation
to REF if for any environment in the class APX is a β approximation
to REF.



Example:)posted)price)mechanism

For a given price p uniform pricing mechanism serves 
a single item to the first agent willing to pay p

Recall: optimal social surplus corresponds to allocating 
item to the highest-value agent

Theorem. If the values of agents are independently drawn from 
the distribution F, uniform pricing mechanism with price 
p = F-1(1 - 1/n) is the e/(e - 1) approximation to the optimal 
social surplus



Example:)posted)price)mechanism

• Take second-price auction as REF and uniform 
pricing as APX

• REF optimizes surplus subject to ex post supply 
constraint (only 1 item is available), i.e. allocates 
each agent with ex ante probability 1/n

• Consider mechanism UB that maximizes social 
surplus subject to constraint that each agent is 
allocated with ex ante probability 1/n but does not 
have ex post supply constraint

• Note that UB ≥ REF



Example:)posted)price)mechanism

• Since UB has no supply constraint, we can optimize 
it for each agent separately

• Socially optimal way of allocating to a single agent 
with ex ante probability 1/n is to offer price 
p = F-1(1 - 1/n)

• In this case Pr(v > p ) =1/n (i.e. agent is allocated)
• Social surplus of UB: UB = n E[v | v > p]Pr(v > p) 

= E[v | v > p]
• Now we relate UB to the social surplus of REF



Example:)posted)price)mechanism

• REF can allocate to only one agent

• The agent is allocated only if her value exceeds the 
uniform price p = F-1(1 - 1/n). The probability of this 
is 1/n

• The item is not allocated if all values are below p
• This can happen with probability  (1-1/n)n<1/e, i.e. 

the probability that the item is allocated is >1 - 1/e
• Expected surplus of APX is then 

APX≥(1 - 1/e) E[v | v > p] = (1 - 1/e)UB≥(1 - 1/e)REF



Bayesian(approximation

• Focus on auction environment with asymmetric 
value distributions

• I.e. the second price auction with a reserve is no 
longer optimal

• We will only consider distributions with monotone 
hazard rate (recall the terminology from Myerson’s 
optimal auction)

• Our goal is to find simple compelling 
approximations for optimal auction in the 
asymmetric environment



Bayesian(approximation

• In symmetric settings Myerson’s optimal auction 
maximizes the revenue of the auctioneer by 
maximizing the virtual surplus

• Each agent’s virtual value is characterized by 
V(v) = v - (1 - F(v)) / f(v)

• Reserve prices are set by discarding all agents with 
negative virtual values

• We want to determine if a version of the optimal 
auction remains approximately optimal in the 
asymmetric settings



Bayesian(approximation

• Consider generalization of the second price 
environment: 

The second-price auction with (discriminatory) 
reserves p = (p1,…,pn) is:
I. reject each agent i with vi < pi ,
II. allocate the item to the highest valued agent remaining 

or none if none exists), and
III. charge the winner her critical price.

• Question: Can this (simple) design provide a good 
approximation for optimal auction?



Bayesian(approximation

Theorem. For single-item environments and agents with 
values drawn independently from (non-identical) regular 
distributions, the second-price auction with (asymmetric) 
monopoly reserve prices obtains at least half the revenue of 
the (asymmetric) optimal auction.



Bayesian(approximation
Proof:

• We proved that for regular distributions (MHR) 
expected revenue is equal to expected virtual surplus

• Both results follow from MHR and the structure of 
virtual value V(v) = v - (1 - F(v)) / f(v)

Lemma. For any virtual value function, the virtual values 
corresponding to values that exceed the monopoly price are non-
negative.

Lemma. For any distribution, the value of an agent is at least 
her virtual value for revenue.



Bayesian(approximation
Proof:

•Let REF denote the optimal auction and its expected 
revenue and APX denote the second price auction with 
monopoly reserves and its expected revenue

•Let I be the winner of the optimal auction and J be 
the winner of the monopoly reserves auction
•Then REF=E[VI(vI)] and  APX=E[VJ(vJ)]
•By law of total probability 

REF= E[VI(vI)] = E[VI(vI) | I  �J]Pr( I  �J )    (a) 
+ E[VI(vI) | I  ≠  J]Pr( I  ≠  J )    (b)



Bayesian(approximation
Proof:

•Part (a): 
E[VI(vI) | I  �J]Pr( I  �J )=E[VJ(vJ) | I  �J]Pr( I  �J )
≤ E[VJ(vJ) | I �J]Pr( I �J )+E[VJ(vJ) |I  ≠  J]Pr(I  ≠  J)
= E[VJ(vJ)] =APX



Bayesian(approximation
Proof:

•Part (b): 
E[VI(vI) | I  ≠  J]Pr(I  ≠  J) ≤ E[ vI | I  ≠  J]Pr(I  ≠  J)
by the property of virtual values;
•Given that J is the winner of APX (second price 
auction), her payment is at least vI
Thus
E[ vI | I  ≠  J]Pr(I  ≠  J)

≤ E[ PaymentJ(vJ)| I  ≠  J]Pr(I  ≠  J)



Bayesian(approximation
Proof:

•Part (b): 
Given that payments are non-negative
E[ PaymentJ(vJ)| I  ≠  J]Pr(I  ≠  J)
≤ E[ PaymentJ(vJ)| I  ≠  J]Pr(I  ≠  J)

+ E[ PaymentJ(vJ)| I �J]Pr(I�J) = APX
Therefore
E[VI(vI) | I  ≠  J]Pr(I  ≠  J) ≤APX



Bayesian(approximation
Proof:

•Collect terms:
• Part (a): E[VI(vI) | I  �J]Pr( I  �J ) ≤APX
• Part (b): E[VI(vI) | I  ≠  J]Pr( I  ≠  J ) ≤APX

•Therefore
REF= E[VI(vI) | I  �J]Pr( I  �J )

+ E[VI(vI) | I  ≠  J]Pr( I  ≠  J ) ≤2 APX
•This means that APX (second price auction with 
monopoly reserves) produces at least half of the 
optimal revenue



Posted'prices
• Disadvantages of auctions
• require multiple rounds of communication (can be slow)
• require all agents to be present at the time of the auction

• In many environments these features are prohibitive: 
routing, online and offline retail

• Posted pricing does not have these disadvantages 
and provides strong revenue guarantees
• No room for collusion
• Can be used to set starting prices if auctions are 

subsequently used



Posted'prices
• Consider oblivious posted prices (agents arrive and 

face their prices in arbitrary order)

• Theory is based on prophet inequality from optimal 
stopping theory
• Gambler faces sequence of n games
• Game i has prize vi as independent draw from Fi
• Order of the games and price distributions known to 
gambler

• In game i gambler observes prize vi ∼ Fi and must decide 
whether to keep the prize and stop or return the prize and 
continue

• Only allowed to keep one prize



Posted'prices
• What is the optimal stopping rule for the gambler?
• Use backwards induction: in game n gambler stops 

regardless of prize realization
• Expected value from stopping in game n is E[vn]
• Then in game n − 1 the gambler stops if vn-1is greater 

than pn-1=E[vn]
• Expected value from stopping in game n − 1 is
pn-2=E[vn-1 | vn-1>pn-1](1 − Fn-1(pn-1))+pn-1Fn-1(pn-1)

• By the same principle, expected value from stopping in 
game n − 2 is
pn-3=E[vn-2 | vn-2>pn-2](1 − Fn-2(pn-2))+pn-2Fn-2(pn-2)



Posted'prices
• This leads to sequence of thresholds p1,…,pn

defining optimal stopping rule for gambler

• Has typical drawbacks of optimal strategies
• Complicated (takes n numbers to describe it)
• sensitive to small changes of gamble (e.g. order of 
games)

• Little room for intuitive understanding of properties of 
good strategies. 

• Does not generalize well to give solutions to similar 
gambles

• May be attractive to look at simple approximations 
instead



Posted'prices
• May be attractive to look at simple approximations 
instead

• Uniform threshold strategy is given by single 
threshold p and requires gambler to accept first prize 
i with vi ≥ p

• Threshold strategies are suboptimal 
• E.g. prescribes not to stop at game n if vn<p 

• Call prize selection procedure when multiple prizes 
are above p tie-breaking rule

• For gambler’s gambler’s game it is lexicographic 
(smallest i)



Prophet(inequality

Theorem. For any product distribution on prize values 
F = F1 ×…×Fn, there exists a uniform threshold strategy such 
that the expected prize of the gambler is at least half the 
expected value of the maximum prize; moreover, the bound is 
invariant with respect to the tie-breaking rule; moreover, for 
continuous distributions with non-negative support one such 
threshold strategy is the one where the probability that the 
gambler receives no prize is exactly 1/2.



Prophet(inequality
• Discussion
• Even though gambler does not know realizations of the 

prizes in advance she can still do half as well as a prophet 
who does. 

• This result implies that optimal (backwards induction) 
strategy has this performance guarantee 

• However, such guarantee was not obvious from  original 
formulation of optimal strategy

• Unlike backwards induction, it is very simple
• Result  driven by trading off probability of not stopping 

and receiving no prize with the probability of stopping 
early with a suboptimal prize



Prophet(inequality
Proof
• Let REF denote prophet and her expected prize 
(E[maxivi]) and APX denote gambler with strategy p and 
her expected price

• Define qi=1-Fi(p)=Pr(vi≥p) the probability that prize i is 
above threshold p and χ=Πi(1-qi) is the probability that 
gambler rejects all prices

• We allow prophet not to pick any prizes is all their values 
are negative

• Use notation (x)+=max{x,0}



Prophet(inequality
Proof
• Bound expected prize of the prophet from above
• REF=E[maxivi]=p+E[maxi (vi-p)]

≤ p+E[maxi (vi-p)+]
≤ p+ΣiE[(vi-p)+]



Prophet(inequality
Proof
• Bound expected prize of the gambler from below
• Suppose that gambler receives prize g
• Split value of the prize into p and g - p (guaranteed part 

and “surplus”)
• Expected value of the prize splits into APX1 and APX2

• Then APX1=p Pr(gambler gets a prize) = (1- χ)p
• To evaluate APX2, denote by Ei the event that all prizes 

excluding ith are below p



Prophet(inequality
Proof
• Bound expected prize of the gambler from below
• Then APX2 ≥ ΣiE[(vi-p)+| Ei]Pr(Ei) ≥ χ ΣiE[(vi-p)+]
• Pr(Ei)= Πi≠j(1-qj) ≥(1-qi) Πi≠j(1-qj)= χ 
• And vi is independent from Ei (can drop conditioning)

• APX=APX1+APX2 ≥ (1- χ)p + χ ΣiE[(vi-p)+]
• Plug χ =1/2: this corresponds to threshold p such that 
χ= Πi(1-Fi(p))=1/2

• Combining two inequalities produces
2APX ≥ p + ΣiE[(vi-p)+] ≥ REF

• This proves the prophet inequality



Prophet(inequality
• Prophet inequality is tight: better approximation bound 

cannot generally by obtained by uniform threshold 
strategy

• Invariance to the tie-breaking rule implies that prophet 
inequality also approximates settings similar to gambler’s 
game

• In oblivious posted pricing agents arrive in worst-case 
order and the first agent who desires to buy the item at 
her offered price does so. 

• Thus, can use prophet inequality to show that there exist 
oblivious posted pricings that guarantee half the optimal 
surplus



Posted'prices
• Second price auction obtains optimal social surplus 
maxivi

• Uniform posted price corresponds to uniform threshold 
for values 

• In worst case arrival order agent with lowest value above 
posted price buys. 

• This is just like the gambler’s game with tie-breaking by 
smallest value vi. 

• Recall that prophet inequality is invariant w.r.t. to tie-
breaking rules



Posted'prices

Theorem. In single-item environments there is an anonymous
pricing whose expected social surplus under any order of agent 
arrival is at least half of that of the optimal social surplus.



Posted'prices
• Now consider revenue from posted price
• Revenue-optimal single-item auction selects winner with 

highest (positive) virtual value
• Note that the gambler’s problem (maximizing prize) is 

similar to the auctioneer’s problem (but maximizing 
virtual value) 

• Uniform threshold for the gambler’s prize corresponds to 
uniform threshold for virtual values maximized by the 
auctioneer

• Note: uniform threshold for virtual values corresponds to 
non-uniform (a.k.a., discriminatory) prices.



Posted'prices
• Definition: uniform virtual price π corresponds to 

uniform virtual pricing p=(p1,…,pn) such that Vi(pi)=
π

• Compare uniform virtual pricing to gambler’s game
• Both use uniform threshold to select maximum
• Uniform virtual pricing obtains worst revenue when 

agents arrive in order of increasing price (in value space). 
• Implicitly breaks ties by smallest posted price pi.
• Gambler’s threshold strategy breaks ties by ordering of 

games (i.e., by smallest i). 

• Irrespective of tie-breaking rule bound of prophet 
inequality holds



Posted'prices

Theorem. In single-item environments there is a uniform virtual
pricing (for virtual values equal to marginal revenues) whose 
expected revenue under any order of agent arrival is at least half 
of that of the optimal auction.



Posted'prices
Proof
• Uniform virtual price π corresponds to uniform virtual 

pricing p=(p1,…,pn). 
• Worst case outcome of such posted pricing: 
• When there is only one agent i with value vi≥pi revenue is
• When there are multiple agents S (values exceed offered prices) 

lowest price arrives first and pays mini∈Spi. 

• This is version of gambler’s game with tie-breaking rule 
by smallest pi

• Bound revenue of uniform virtual pricing with worst-
case arrival order, relate its revenue to its virtual surplus.



Posted'prices
Proof
• By  Myerson’s theorem can express optimal revenue as 

expected maximum virtual value
• Expected revenue of a uniform virtual pricing is equal to 

its expected virtual surplus.
• By prophet inequality, there is uniform virtual price that 

obtains a virtual surplus of at least ½ of maximum virtual 
value

• Thus, the revenue of the corresponding price posting is at 
least half the optimal revenue.


