Lecture 24

Markets, Mechanisms and Machines

David Evans and Denis Nekipelov

Privacy and incentives

- In economics literature privacy is studied from incentive perspective
 - How does a game change if one player has more information than the other?
- "Privacy regime" corresponds to how much information is shared between the players
- Typically this is context-specific
- Only information that is directly relevant for transaction is considered
- Value of privacy can be measured by changes social welfare induced by behavior in "private" vs "non-private" settings

Privacy and incentives

- Private information corresponds to "types" or valuations in auctions
- Usually consider asymmetric settings: one player (principal) who wants to exploit private information, another player (agent) who has private information but does not want it to be exploited
- Principal and agents move sequentially: principal gives a "contract" to agent, agent chooses action based on "terms"
- Privacy measured by amount of information that leaks from principal to agent
- Natural way of summarizing information transfer: probability distribution (beliefs)

Dynamic Bayesian Games

- Many practical environments are dynamic
- •Nature assigns types, players act (sequentially)
- Need extension of Nash and subgame Nash equilibria to Bayesian settings
- Perfect Bayesian Equilibrium (PBE)
- •Two kinds of players:informed and uninformed (firms and workers, entrants and incumbents).
- •Uninformed player tries to infer informed player's private information from her behavior to choose action
- •Informed player takes inference into account when choosing her action

Dynamic Bayesian Games

- Uninformed players realize that informed ones change their action knowing that it can be used "against" them
- Need to take that into account to infer properly
- Impossible to derive best responses without knowing inference rule
- PBE has a built-in concept of inference called beliefs (based on Bayesian updating)
- Best responses are evaluated using that concept

- Government can offer (or not) a construction firm a contract
- Goal of the government: guarantee on time project completion
 - E.g infrastructure project
- Government can use two different on-time completion incentive payouts that are only revealed after job is complete
- Firm can exert (high or low) effort and complete project on time (or not)
- Goal of the firm: maximize expected utility

- The game has only one subgame
- SPNE are NE of the bi-matrix game:

	L	Η
Offer 1	(-1,-1)	(3,0)
Offer 2	(-1,-1)	(2,1)
No offer	(0,2)	(0,2)

- Two pure-strategy NE
 - (Offer 1, H)
 - (No offer, L)

	\mathbf{L}	Н
Offer 1	(-1,-1)	(3,0)
Offer 2	(-1,-1)	(2,1)
No offer	(0,2)	(0,2)

- Solution: introduce beliefs as part of solution concept
- Beliefs correspond to "educated guess" (in the form of probability distribution) of one player regarding how other player acts
- In our example, firm should never exert low effort regardless of what it beliefs the government has chosen for the incentive contract

Perfect Bayesian Equilibrium

Beliefs of player *i* are a conditional distribution over the elements of the information set *i* is in, given player *i* is in that information set: $P_i(v | S)$ for *v* in S

Belief in static Bayesian games (e.g. auctions) is $P_i(v_{-i} | v_i)$ (distribution of profile of types of opponent given own type)

Note: information set in static Bayesian game has only one element v_i

Perfect Bayesian Equilibrium

Perfect Bayesian equilibrium (PBE) strengthens subgame perfection by requiring two elements:

- a complete strategy for each player *i* (mapping from info. sets to mixed actions)
- beliefs for each player i: $P_i(v | S)$ for all information sets S which player *i* can reach

- If government decides to mix between options and chooses probabilities (p_{01}, p_{02}, p_{NO})
- Firm has to guess which node it is in

Perfect Bayesian Equilibrium

- PBE formalizes the concept of "guessing" using available information
- We mandate the "guessing" to occur based on the Bayes rule
- In equilibrium beliefs should be correct: Bayes rule-derived probabilities are equal to actual probabilities of occurrence of information sets
- Players act to maximize payoffs
 - Player *i*'s strategy $s_i(\cdot)$ is such that in any information set *h* of player *i*,
 - $s_i(h)$ maximizes *i*'s expected payoff, given her beliefs and others' strategies

- For any beliefs, firm maximizes it's payoff by choosing high effort
- Thus, in any PBE firm should play H

- In PBE government chooses Offer 1 in its information set
- PBE is unique: SPNE (No offer, L) was eliminated

Perfect Bayesian Equilibrium

- In PBE with private types of players principal is interested in "revealing" those types
- PBE where agents with different types act differently is called separating PBE
- PBE where groups of agents with different types choose the same action is called pooling PBE
- "Privacy regime" is determined by whether PBE separates types

- Spence (1973): "The lemon market"
 - To avoid market collapse individuals may engage in costly "signaling" to reveal their type
- In separating equilibrium with signaling, individuals with different types choose different signals
- Principal can treat different types differently
- Privacy allows individuals not to waste effort on signaling
- Gottlieb and Smetters (2011): 9 out of 15 top MBA programs in the US do not disclose student grades to employers

- Simple model: Ability of MBA student $\theta \in [0,1]$ produces grade g with effort cost g/θ
- When student graduates θ is her productivity at work
- With public grades, offered wage will depend on g
- When grades are not public, employers have to pay the same wage to all MBA graduates

• Utility of graduate

 $U(w, g, \theta) = w - g/\theta$

- Profit of the firm is θ w
- Assume that θ takes values on [0,1]
- This principal-agent setting of a sequential game:
 - 1. MBA graduate makes decision to exert effort by choosing g
 - 2. Firms make competitive offers *w*
 - 3. MBA graduate accepts or rejects it

- Find grade-dependent wage w(g)
 - MBA student chooses effort (expressed in grade g) to maximize utility $U(w(g), g, \theta)$ with respect to
 - FOC: $w'(g)=1/\theta$, which implicitly defines $g(\theta)$
 - Firms make competitive offers w(g)
 - Since firms know w(g), they know mapping $g(\theta)$
 - Thus firm can infer θ from observing grade g
 - Competitive offer is then $w=\theta$
 - This means that $w(g) = \theta = 1/w'(g)$
 - Solve differential equation to get

 $w(g) = (2g)^{1/2}$ (calibration w(0) = 0)

In separating equilibria

- Students with different abilities choose different effort
- In this equilibrium $g^*(\theta) = \theta^2/2$ (students with higher ability earn higher grades)
- Equilibrium payment $w^*(g) = \theta$ and utility $U^*(\theta) = \theta/2$
- In "grade privacy" regime firms offer uniform wage $w_U = E[\theta]$
 - None of the students exert effort
 - This is a "pooling" equilibrium
- Grade privacy is optimal if $U^*(\theta) \le E[\theta]$, i.e. $E[\theta] \ge 1/2$
 - MBA students have to be "selectively smart"

- Varian (1997): consumers may suffer privacy costs when "principal" knows too little information about them
 - It limits the ability of principal to customize the product
- At the same time, consumers have opposite incentive to not share too much information
 - Consumers want to limit price discrimination
- Consumer may rationally decide to share personal information with principal
 - However, she does not control information after it is communicated to principal
 - Principal may sell consumer's data to third parties that would use it for their purposes
 - Third parties create externality for information sharing

- Consider market for particular product
- Consumers are "infinitesimal" (cannot influence market price individually) with valuations uniformly distributed on [0,1]
- Market served by monopolist with zero production cost
 - This is a normalization
- Without market for information
 - Firm's profit from offering price *p*: *p*(1-*p*) (fraction of consumers with values below the price is 1-*p*)
 - Monopolist sets the price $p_M = 1/2$
 - Firm's optimal profit is $\frac{1}{4}$
 - Aggregate consumer surplus is $(p-p^2/2)|_{0.5}=1/8$

- Suppose that each consumer has verifiable information (e.g., place of residence or employment) perfectly correlated with her valuation for product.
- Firm first makes offer to pay $r \ge 0$ to consumer revealing her information
- And uses information to make personalized price offers $p^*(v)$ to consumers who sold their information and common price *p* to everyone else
- Equilibrium concept: perfect Bayesian equilibrium (PBE)
 - Bayes-Nash equilibrium concept applied to sequential settings
 - Requires players to form beliefs regarding opponent types

- In PBE
 - Firm offers r = 0 for information.
 - All consumers reveal their valuations,
 - Firm sets $p^*(v) = v$ and p = 1.
- Note that high-value consumers will be served in any case
- Low value consumers will be served if they revealed their values
- Marginal anonymous consumer makes no surplus and reveals her valuation for an arbitrarily small payment
- This means that there are now marginal consumers in equilibrium: everyone reveals their values

- All consumers are served in equilibrium
- Social welfare generated is $(p-p^2/2)|_0^1 = 1/2$
- This equilibrium is efficient
- However, consumer surplus is now 0
- Even though consumers had ownership of their information, unregulated market for information transferred all their surplus to the monopolist

Information and price discrimination

- Dynamic settings can be more realistic
- Firm that sells product in many period can learn about valuations of consumers for product given that they did not purchase at a given price
- This allows firms to engage in intertemporal price discrimination
- The extent of price discrimination is further amplified when some consumers are naïve and do not anticipate that information they reveal to the firm in a given period will be used by firm for pricing in future periods

- Two-period market
- Population of n consumers with unit demand in each period
- Half of consumers have valuation 1 (high valuation) in both periods
- The other half have valuations $\lambda \in (0, 1/2)$ (low valuation) in both periods.
- Each consumer's valuation is privately known
- Product is sold by a monopolist with production cost normalized to 0

- Consumers and firm are risk neutral and do not use time discounting
- Common knowledge that monopolist has tracking technology (cookies, browser fingerprints) with which it can recall whether (and at what price) consumer purchased the good in first period
- Monopolist can use this information to make personalized price offers to consumers in second period.

- PBE characterization:
- Monopolist makes first-period price offers
- $p_1 = 1$ to all consumers and second period offers $p_2 = 1$ to all consumers regardless of their purchase histories.
- low-valuation consumers never purchase the good
- High-valuation consumer purchases with probability 1 in the second period but purchases $(1-2 \lambda)/(1-\lambda) < 1$ in the first period
- This makes monopolist indifferent between offering $p_2 = 1$ and $p_2 = \lambda$ following the first period rejection

• If monopolist could publicly commit not to use tracking technology then price offers would be the same,

 $p_1 = p_2 = 1$

- BUT high-valuation consumers would accept with probability 1 in first period
- Rejections in this setting could never induce lower second-period prices
- Tracking technology leads to strategic first-period rejections by high-valuation consumers
- This is welfare suboptimal with a loss of surplus of $n\lambda/(1-\lambda)$